乐厨考试网-考试资讯平台

当前位置:乐厨考试网 > 考试报名 > 八年级数学试题,八年级数学试题分析

八年级数学试题,八年级数学试题分析

2025-07-07 02:38:43

八年级数学试题,八年级数学试题分析

在学习的征途中,八年级无疑是一个承上启下的关键阶段,而数学作为学科金字塔中的坚固基石,其重要性不言而喻。八年级数学试题,不仅是检验学生知识掌握程度的试金石,更是引导他们深入思考、培养逻辑思维能力的桥梁。本文旨在通过对八年级数学试题的深入分析,探讨其背后的教育意义与教学策略,希望能够为师生们提供一些启发和思考。

一、八年级数学试题概览步入八年级,数学的殿堂变得更加丰富多彩,从有理数的深入探索到几何图形的初步认识,再到方程与不等式的灵活应用,每一个章节都蕴含着无尽的智慧与挑战。试题类型也从单一的计算题逐渐过渡到应用题、证明题等多种形式,旨在全面考察学生的理解能力、分析能力和解决问题的能力。这些试题设计精巧,既有对基础概念的巩固,也有对思维拓展的引导。

二、试题分析:以实例为镜以一道典型的八年级数学试题为例:“已知直线AB与CD相交于点O,若∠AOC=60°,求∠DOB的度数。”这道题目表面上看是对角的基本性质的应用,实则考察的是学生空间想象能力和逻辑推理能力。解题过程中,需要学生首先明确“对顶角相等”的几何定理,然后通过角度计算得出结论。这类题目不仅加深了学生对几何图形的直观理解,也锻炼了他们的逻辑思维和严谨的数学表达能力。

再来看一道涉及方程应用的题目:“某超市购进一批苹果,每千克进价5元,若按每千克7元出售,每天可售出200千克。若每千克涨价1元,则每天销售量减少10千克。问该超市应如何定价,才能使每天利润最大化?”这道题目将实际问题抽象为数学模型,需要学生运用一次函数求极值的方法求解。它教会学生在面对复杂问题时,如何抽丝剥茧,将实际问题转化为数学问题,再通过计算和推理找出最优解。这种能力的培养,对于提升学生的综合素养具有重要意义。

三、教育意义与教学策略八年级数学试题的精心设计,不仅在于测试知识的掌握,更在于激发学生的探索欲和创造力。教育者应充分利用这些试题作为教学工具,引导学生在解题过程中主动思考,鼓励他们提出问题和假设,通过小组讨论或合作学习的方式共同探讨解决方案。同时,教师应注重培养学生的数学语言能力和数学建模能力,使他们能够用数学的眼光观察世界,用数学的语言描述现象,用数学的方法解决问题。

此外,针对学生在解题过程中遇到的难点和易错点,教师应及时给予反馈和指导,采用多样化的教学方法,如情境模拟、游戏化学习等,激发学生的学习兴趣,增强他们的自信心和成就感。通过不断的实践和总结,学生可以逐渐掌握解题技巧,形成自己的解题策略,从而在数学学习上取得更大的进步。

四、结语八年级数学试题,是知识与智慧的碰撞,是思维与能力的磨砺。它们如同一盏盏明灯,照亮学生探索数学世界的道路,引领他们在数与形的海洋中遨游。通过对这些试题的深入分析和教学策略的优化,我们能够更好地激发学生的数学潜能,培养他们的创新精神和实践能力,为他们的终身学习打下坚实的基础。让我们携手并进,在这条充满挑战与机遇的数学之路上,共同书写属于每一位学生的精彩篇章。

这是八年级下册数学。数据的分析,平均数。帮忙把第六题写出来给满意。

七年级学生人数:1000×(1-35%-30%)

=1000×35%

=350人

八年级学生数:1000×35%=350人

九年级学生数:1000×30%=300人

1)捐书总数:

350×2+350×6+300×4

=700+2100+1200

=4000本

2)全校平均:

4000÷1000=4本

八年级数学上册期末试卷及答案

关键的八年级数学期末考试就临近了,只要努力过、奋斗过,就不会后悔。下面是我为大家精心整理的八年级数学上册期末试卷,仅供参考。

八年级数学上册期末试题

一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.

1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()

A. B. C. D.

2.下列运算正确的是()

A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2

3. 的平方根是()

A.2 B.±2 C. D.±

4.用科学记数法表示﹣0.00059为()

A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7

5.使分式 有意义的x的取值范围是()

A.x≤3 B.x≥3 C.x≠3 D.x=3

6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()

A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC

7.若 有意义,则 的值是()

A. B.2 C. D.7

8.已知a﹣b=1且ab=2,则式子a+b的值是()

A.3 B.± C.±3 D.±4

9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是()

A.a B.2a C.3a D.4a

10.已知xy<0,化简二次根式y 的正确结果为()

A. B. C. D.

11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为()

A. B. C.2 D.

12.若关于x的分式方程 无解,则常数m的值为()

A.1 B.2 C.﹣1 D.﹣2

二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分.

13.将xy﹣x+y﹣1因式分解,其结果是.

14.腰长为5,一条高为3的等腰三角形的底边长为.

15.若x2﹣4x+4+ =0,则xy的值等于.

16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=度.

三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。

17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.

18.先化简,再求值:

(1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2.

(2)( )÷ ,其中a= .

19.列方程,解应用题.

某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天

20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论.

21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF.

(1)求证:AE=AF;

(2)求∠EAF的度数.

22.阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索:

设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m .

a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a=,b=.

(2)利用所探索的结论,用完全平方式表示出: =.

(3)请化简: .

八年级数学上册期末试卷参考答案

一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.

1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()

A. B. C. D.

【考点】轴对称图形.

【分析】根据轴对称图形的概念求解.

【解答】解:A、不是轴对称图形,故本选项错误;

B、不是轴对称图形,故本选项错误;

C、不是轴对称图形,故本选项错误;

D、是轴对称图形,故本选项正确.

故选D.

【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.

2.下列运算正确的是()

A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2

【考点】同底数幂的除法;合并同类项;同底数幂的乘法;二次根式的加减法.

【分析】根据合并同类项、同底数幂的乘法、除法,即可解答.

【解答】解:A、a+a=2a,故错误;

B、a3•a2=a5,正确;

C、 ,故错误;

D、a6÷a3=a3,故错误;

故选:B.

【点评】本题考查了合并同类项、同底数幂的乘法、除法,解决本题的关键是熟记合并同类项、同底数幂的乘法、除法.

3. 的平方根是()

A.2 B.±2 C. D.±

【考点】算术平方根;平方根.

【专题】常规题型.

【分析】先化简 ,然后再根据平方根的定义求解即可.

【解答】解:∵ =2,

∴ 的平方根是± .

故选D.

【点评】本题考查了平方根的定义以及算术平方根,先把 正确化简是解题的关键,本题比较容易出错.

4.用科学记数法表示﹣0.00059为()

A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7

【考点】科学记数法—表示较小的数.

【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

【解答】解:﹣0.00059=﹣5.9×10﹣4,

故选:C.

【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

5.使分式 有意义的x的取值范围是()

A.x≤3 B.x≥3 C.x≠3 D.x=3

【考点】分式有意义的条件.

【分析】分式有意义的条件是分母不等于零,从而得到x﹣3≠0.

【解答】解:∵分式 有意义,

∴x﹣3≠0.

解得:x≠3.

故选:C.

【点评】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键.

6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()

A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC

【考点】平行四边形的判定.

【分析】根据平行四边形判定定理进行判断.

【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;

B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;

C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;

D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;

故选D.

【点评】本题考查了平行四边形的判定.

(1)两组对边分别平行的四边形是平行四边形.

(2)两组对边分别相等的四边形是平行四边形.

(3)一组对边平行且相等的四边形是平行四边形.

(4)两组对角分别相等的四边形是平行四边形.

(5)对角线互相平分的四边形是平行四边形.

7.若 有意义,则 的值是()

A. B.2 C. D.7

【考点】二次根式有意义的条件.

【分析】根据二次根式中的被开方数必须是非负数求出x的值,根据算术平方根的概念计算即可.

【解答】解:由题意得,x≥0,﹣x≥0,

∴x=0,

则 =2,

故选:B.

【点评】本题考查的是二次根式有意义的条件以及算术平方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键.

8.已知a﹣b=1且ab=2,则式子a+b的值是()

A.3 B.± C.±3 D.±4

【考点】完全平方公式.

【专题】计算题;整式.

【分析】把a﹣b=1两边平方,利用完全平方公式化简,将ab=2代入求出a2+b2的值,再利用完全平方公式求出所求式子的值即可.

【解答】解:把a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,

将ab=2代入得:a2+b2=5,

∴(a+b)2=a2+b2+2ab=5+4=9,

则a+b=±3,

故选C

【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.

9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是()

A.a B.2a C.3a D.4a

【考点】平行四边形的性质.

【分析】由▱ABCD的周长为4a,可得AD+CD=2a,OA=OC,又由OE⊥AC,根据线段垂直平分线的性质,可证得AE=CE,继而求得△DCE的周长=AD+CD.

【解答】解:∵▱ABCD的周长为4a,

∴AD+CD=2a,OA=OC,

∵OE⊥AC,

∴AE=CE,

∴△DCE的周长为:CD+DE+CE=CD+DE+AE=CD+AD=2a.

故选:B.

【点评】此题考查了平行四边形的性质以及线段垂直平分线的性质.注意得到△DCE的周长=AD+CD是关键.

10.已知xy<0,化简二次根式y 的正确结果为()

A. B. C. D.

【考点】二次根式的性质与化简.

【分析】先求出x、y的范围,再根据二次根式的性质化简即可.

【解答】解:∵要使 有意义,必须 ≥0,

解得:x≥0,

∵xy<0,

∴y<0,

∴y =y• =﹣ ,

故选A.

【点评】本题考查了二次根式的性质的应用,能正确根据二次根式的性质进行化简是解此题的关键.

11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为()

A. B. C.2 D.

【考点】翻折变换(折叠问题).

【分析】DE是边AB的垂直平分线,则AE=BE,设AE=x,在直角△BCE中利用勾股定理即可列方程求得x的值,进而求得EC的长.

【解答】解:∵DE垂直平分AB,

∴AE=BE,

设AE=x,则BE=x,EC=4﹣x.

在直角△BCE中,BE2=EC2+BC2,则x2=(4﹣x)2+9,

解得:x= ,

则EC=AC﹣AE=4﹣ = .

故选B.

【点评】本题考查了图形的折叠的性质以及勾股定理,正确理解DE是AB的垂直平分线是本题的关键.

12.若关于x的分式方程 无解,则常数m的值为()

A.1 B.2 C.﹣1 D.﹣2

【考点】分式方程的解;解一元一次方程.

【专题】计算题;转化思想;一次方程(组)及应用;分式方程及应用.

【分析】将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值.

【解答】解:将方程两边都乘以最简公分母(x﹣3),得:1=2(x﹣3)﹣m,

∵当x=3时,原分式方程无解,

∴1=﹣m,即m=﹣1;

故选C.

【点评】本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键.

二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分.

13.将xy﹣x+y﹣1因式分解,其结果是(y﹣1)(x+1).

【考点】因式分解-分组分解法.

【分析】首先重新分组,进而利用提取公因式法分解因式得出答案.

【解答】解:xy﹣x+y﹣1

=x(y﹣1)+y﹣1

=(y﹣1)(x+1).

故答案为:(y﹣1)(x+1).

【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键.

14.腰长为5,一条高为3的等腰三角形的底边长为8或 或3 .

【考点】等腰三角形的性质;三角形三边关系.

【分析】根据不同边上的高为3分类讨论,利用勾股定理即可得到本题的答案.

【解答】解:①如图1.

当AB=AC=5,AD=3,

则BD=CD=4,

所以底边长为8;

②如图2.

当AB=AC=5,CD=3时,

则AD=4,

所以BD=1,

则BC= = ,

即此时底边长为 ;

③如图3.

当AB=AC=5,CD=3时,

则AD=4,

所以BD=9,

则BC= =3 ,

即此时底边长为3 .

故答案为:8或 或3 .

【点评】本题考查了等腰三角形的性质,勾股定理,解题的关键是分三种情况分类讨论.

15.若x2﹣4x+4+ =0,则xy的值等于6.

【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根;配方法的应用.

【专题】计算题;一次方程(组)及应用.

【分析】已知等式变形后,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出xy的值.

【解答】解:∵x2﹣4x+4+ =(x﹣2)2+ =0,

∴ ,

解得: ,

则xy=6.

故答案为:6

【点评】此题考查了解二元一次方程组,配方法的应用,以及非负数的性质,熟练掌握运算法则是解本题的关键.

16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=180度.

【考点】勾股定理的逆定理;勾股定理.

【分析】勾股定理的逆定理是判定直角三角形的方法之一.

【解答】解:连接AC,根据勾股定理得AC= =25,

∵AD2+DC2=AC2即72+242=252,

∴根据勾股定理的逆定理,△ADC也是直角三角形,∠D=90°,

故∠A+∠C=∠D+∠B=180°,故填180.

【点评】本题考查了勾股定理和勾股定理的逆定理,两条定理在同一题目考查,是比较好的题目.

三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。

17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.

【考点】作图-轴对称变换.

【分析】分别利用关于x轴、y轴对称点的坐标性质得出各对应点的位置,进而得出答案.

【解答】解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标:

A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1),

如图所示:△A2B2C2,即为所求.

【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.

18.先化简,再求值:

(1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2.

(2)( )÷ ,其中a= .

【考点】分式的化简求值;整式的混合运算—化简求值.

【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可;

(2)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.

【解答】解:(1)原式=5x2﹣x2+y2﹣4x2+4xy﹣y2

=4xy,

当x=1,y=2时,原式=4×1×2=8;

(2)原式= •

= •

=a﹣1,

当a= 时,原式= ﹣1.

【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.

19.列方程,解应用题.

某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天

【考点】分式方程的应用.

【分析】设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 ,根据总的工作量为1列出方程并解答.

【解答】解:设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 ,

根据题意,得: +2×( + )=1,

解得x=4.5.

经检验,x=4.5是原方程的根.

答:乙车间单独制作这批棉学生服需要4.5天.

【点评】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.

20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论.

【考点】因式分解的应用.

【分析】根据完全平方公式,可得非负数的和为零,可得每个非负数为零,可得a、b、c的值,根据勾股定理逆定理,可得答案.

【解答】解:△ABC是等腰直角三角形.

理由:∵a2﹣4a+b2﹣4 c=4b﹣16﹣c2,

∴(a2﹣4a+4)+(b2﹣4b+4)+(c2﹣4 c+8)=0,

即:(a﹣2)2+(b﹣2)2+(c﹣2 )2=0.

∵(a﹣2)2≥0,(b﹣2)2≥0,(c﹣2 )2≥0,

∴a﹣2=0,b﹣2=0,c﹣2 =0,

∴a=b=2,c=2 ,

∵22+22=(2 )2,

∴a2+b2=c2,

所以△ABC是以c为斜边的等腰直角三角形.

【点评】本题考查了因式分解的应用,勾股定理逆定理,利用了非负数的和为零得出a、b、c的值是解题关键.

21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF.

(1)求证:AE=AF;

(2)求∠EAF的度数.

【考点】全等三角形的判定与性质;平行四边形的性质.

【分析】(1)寻找分别含有AE和AF的三角形,通过证明两三角形全等得出AE=AF.

(2)在∠BAD中能找出∠EAF=∠BAD﹣(∠BAE+∠FAD),在(1)中我们证出了三角形全等,将∠FAD换成等角∠AEB即可解决.

【解答】(1)证明:∵四边形ABCD是平行四边形,并且∠BCD=120°,

∴∠BCE=∠DCF=60°,CB=DA,CD=BA,∠ABC=∠ADC,

∵CB=CE,CD=CF,

∴△BEC和△DCF都是等边三角形,

∴CB=CE=BE=DA,CD=CF=DF=BA,

∴∠ABC+∠CBE=∠ADC+∠CDF,

即:∠ABE=∠FDA

在△ABE和△FDA中,AB=DF,∠ABE=∠FDA,BE=DA,

∴△ABE≌△FDA (SAS),

∴AE=AF.

(2)解:∵在△ABE中,∠ABE=∠ABC+∠CBE=60°+60°=120°,

∴∠BAE+∠AEB=60°,

∵∠AEB=∠FAD,

∴∠BAE+∠FAD=60°,

∵∠BAD=∠BCD=120°,

∴∠EAF=∠BAD﹣(∠BAE+∠FAD)=120°﹣60°=60°.

答:∠EAF的度数为60°.

【点评】本题考查全等三角形的判定与性质,解题的关键是寻找合适的全等三角形,通过寻找等量关系证得全等,从而得出结论.

22.阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索:

设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m .

a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a=m2+3n2,b=2mn.

(2)利用所探索的结论,用完全平方式表示出: =(2+ )2.

(3)请化简: .

【考点】二次根式的性质与化简.

【专题】阅读型.

【分析】(1)利用已知直接去括号进而得出a,b的值;

(2)直接利用完全平方公式,变形得出答案;

(3)直接利用完全平方公式,变形化简即可.

【解答】解:(1)∵a+b =(m+n )2,

∴a+b =(m+n )2=m2+3n2+2 mn,

∴a=m2+3n2,b=2mn;

故答案为:m2+3n2;2mn;

(2) =(2+ )2;

故答案为:(2+ )2;

(3)∵12+6 =(3+ )2,

∴ = =3+ .

人教版八年级下册数学工程问题试题

1、八年级学生去距学校10千米的地方。一些学生骑自行车先走,过了20分钟,其他学生乘坐汽车出发结果同时到达。已知汽车是自行车的2倍。求骑车学生的。

解:设骑车同学的是X,则汽车的是2X

10/X-10/2X=1/3

X=15

所以骑车同学的是每小时行驶15千米

类型一.

1. 八年级两班学生参加植树造林活动.已知甲班每天比乙班每天多植15棵树,甲班植90棵树所用天数与乙班植树60棵树所用天数相等.则甲班每天植树多少棵

2. 某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务.则原计划每天固沙造林多少公顷

类型二

1.A.B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料

2.A.B两种机器人都被用来搬运化工原料,A型机器人每小时多搬运30千克,A型机器人搬运往900千克所用时间与B型机器人搬运600千克所用时间相等,两种机器人每小时分别搬运多少化工原料

类型三

1.甲, 乙两名采购员同去一家饲料公司购买两次饲料,两次饲料的价格分别为m元/kg 和 n元/kg (m,n为正数且m n) 为正数且 ,两名采购员的购货方式也不同,其中,甲每次购买1000千克, 乙每次用去800元,而不管购买多少饲料.

(1)甲, 乙所购饲料的平均单价各是多少

(2)谁的购货方式更合算

2.甲,乙二人两次同时在同一家粮店购买粮食(假设两次购买粮食的单价不同),甲每次购买粮食100kg, 乙每次购买粮食用去100元,设甲, 乙二人第一次购粮的单价为x元/kg ,第二次购粮的单价为y元/kg.

(1)请你用含x.,y的代数式表示出:甲两次购买粮食共应付粮款­­ 元;乙两次购买粮食 kg,如果甲, 乙两次购粮的平均单价为每千克C1 元和每千克C2元,则C1 = ,C2= .

(2)若规定谁两次购粮的单价低,谁的购粮方式就合算些,请你与同伴交流一下,判断甲, 乙二人谁的购粮方式更合算些,阐明理由.

提高题

1. 丽园开发公司的960件新产品需要精加工后,才能投放市场,现有甲, 乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工的数量的 ,公司需付甲工厂加工费用每天80元,需付乙工厂加工费用每天120元.

(1)问:甲,乙两工厂每天各能加工多少件新产品?

(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合做完成;在加工过程中,公司派一名工程师每天到厂家进行技术指导,并负担每天5元的误餐补助.请你帮公司选择一种既省时又省钱的加工方案,并说明理由.

2.某自来水公司水费计算办法如下:若每户每月用水不超过5 ,则每立方米收费1.5元;若每户每月用水超过5 ,则超出的部分每立方米收取较高的定额费用.1月份,张家用水量是李家用水量的 ,张家当月水费是17.5元,李家当月水费是27.5元.问:超出 5 的部分每立方米收费多少元

1.甲, 乙两名采购员同去一家饲料公司购买两次饲料,两次饲料的价格分别为m元/kg 和 n元/kg (m,n为正数且m n) 为正数且 ,两名采购员的购货方式也不同,其中,甲每次购买1000千克, 乙每次用去800元,而不管购买多少饲料.

(1)甲, 乙所购饲料的平均单价各是多少

(2)谁的购货方式更合算

2.甲,乙二人两次同时在同一家粮店购买粮食(假设两次购买粮食的单价不同),甲每次购买粮食100kg, 乙每次购买粮食用去100元,设甲, 乙二人第一次购粮的单价为x元/kg ,第二次购粮的单价为y元/kg.

(1)请你用含x.,y的代数式表示出:甲两次购买粮食共应付粮款­­ 元;乙两次购买粮食 kg,如果甲, 乙两次购粮的平均单价为每千克C1 元和每千克C2元,则C1 = ,C2= .

(2)若规定谁两次购粮的单价低,谁的购粮方式就合算些,请你与同伴交流一下,判断甲, 乙二人谁的购粮方式更合算些,阐明理由.

提高题

1. 丽园开发公司的960件新产品需要精加工后,才能投放市场,现有甲, 乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工的数量的 ,公司需付甲工厂加工费用每天80元,需付乙工厂加工费用每天120元.

(1)问:甲,乙两工厂每天各能加工多少件新产品?

(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合做完成;在加工过程中,公司派一名工程师每天到厂家进行技术指导,并负担每天5元的误餐补助.请你帮公司选择一种既省时又省钱的加工方案,并说明理由.

2.某自来水公司水费计算办法如下:若每户每月用水不超过5 ,则每立方米收费1.5元;若每户每月用水超过5 ,则超出的部分每立方米收取较高的定额费用.1月份,张家用水量是李家用水量的 ,张家当月水费是17.5元,李家当月水费是27.5元.问:超出 5 的部分每立方米收费多少元

八年级数学成绩分析及改进措施

八年级数学成绩分析及改进措施如下:

1、做一个个人错题集,没事的时候就翻一翻,看一看,自警一番,肯定会有很大的收获。选一本比较好的参考书,参考书不要很多,有一本主要的就足够了。

2、遇到疑难该怎么办呢?首先是要尽可能的通过自己的努力去解决,如果不能解决,也要弄明白自己不会的原因是什么,问题出在那里。我经常说的一句话是:决不奢望不遇到难题,但是,也决不允许自己不明白难题难在那里。

3、自己不能解决的时候,就可以采取讨论以及向老师请教等方式,最终解决那些难题;解决绝不是你原来不会做的通过别人的帮助会做了,而是,在会做之后,回过头来比较一下原来不会的原因是什么,一定要把这个原因找出来,否则,就失去了一次提高的机会,做题也失去了意义。

4、怎么跳出题海?我想大家一定非常关心这个题目,因为物理难懂、化学难记、数学有做不完的题。但题目是数学的心脏,不做题是万万不行的。而摆在我们面前的题目太多了,好像永远也做不完。试试下面的方法,第一,在完成作业的基础上分析一下每到题目都是怎么考察的,考察了什么知识点。

5、这个知识点的考察还有没有其他的方式;第二,继续做题时,完全不必要每道题目都详细的解出来了,只要看过之后,可以归入我们上面分析过的题型,知道解题思路就可以跳过去了!这样,对每个知识点,都能把握其考试方式,这才是真正的提高。

6、如果意识不到这一点,做一道题只是做了一道题,“就题论题”,不能跳出题外,看不到问题的本质,遇到新的题目,稍有一些不同就没有办法了,还谈什么提高呢?又怎能摆脱让你烦恼的题海呢。

7、勤奋,持之以恒是学好数学的必要条件。多动笔,多思考,两者相结合,这是最重要的,也是学好数学,甚至理科的法宝。我想,只要坚持做到几点,学生的成绩一定能赶上来!

声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

上一篇:新高考省份

下一篇:返回列表

相关推荐

本网站所有内容均由编辑从互联网收集整理,如果您发现不合适的内容,请联系我们进行处理,谢谢合作!

Copyright © 2021-2022 乐厨考试网 版权所有 网站备案号:冀ICP备2022028965号 网站地图